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The present paper proposes a simplified way to analyze thermal diffusivity 
experiments in which the phase shift is measured between the modulat ions of 
the temperatures on either face of a disk-shaped sample. The direct application 
of complex numbers  mathematics  avoids the use of the cumbersome formulae 
which hitherto have hampered a wider confirmation of the method and which 
restricted the range of the phase lag to an angle of 180 ~ . The algorithm exposed 
makes it more practical to refine the analysis, which may lead to a higher 
accuracy and a wider use of the method. The origins of some possible errors in 
the calculated results are briefly reviewed. 
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1. I N T R O D U C T I O N  

In 1960-i961 Cowan [1, 2] proposed a modification of the well-known 
Angstr6m method for measuring thermal diffusivity at high temperatures 
on disk-shaped samples, the temperature modulation phase lag method. 
The development of this method and its associated mathematics marked a 
breakthrough in the field of thermal diffusivity-conductivity measurement 
techniques. Today it still is an efficient and up-to-date method next to the 
well-known pulse or flash method. 

Cowan demonstrated the feasibility to calculate, from a phase lag 
measurement only, the thermal diffusivity and conductivity of a disk- 
shaped sample. One face of a thin disk of the material to be measured (see 
Fig. 1) is brought to a given equilibrium temperature by an adjustable 
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Fig. 1. Schematic experimental sample arrangement. 

energy influx (e.g., thermal radiation, laser irradiation, electron beam 
bombardment, or the like) and this energy is sinusoidally modulated in 
amplitude. 

Three phase shifts are to be distinguished: the shift 6t between the 
heating beam and the temperature modulation of the heated surface, the 
shift c5 o between the heating beam and the temperature of the nonheated 
surface, and the shift A over the sample. They are connected to each other 
by the relation 2 

A = ~ o - ~ t  (1) 

Cowan showed that the measurement of A was to be preferred over 6~ 
or ~o, particularly since delicate interfering heat loss parameters have mini- 
mum influence in that case. Also, the measurement of A can generally be 
carried out more easily and more accurately. Subsequent literature is in 
agreement with the statements of Cowan; consult, e.g., an exhaustive 
survey concerned with thermal modulation diffusivity methods E3]. 

2 For a complete definition of symbols refer to the Nomenclature. 
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Nevertheless, Cowan did not derive an explicit expression for J but only 
for 6z and 6 0 separately, and these expressions are rather cumbersome. 
Credit should be given to Wheeler [4] for his progressive approach of the 
problem and his introduction of a practical iterative calculation method. 

Only few authors have dealt with further developments of Cowan's 
original work. Cerceo and Childers [5] derived an equation which directly 
gives A but their analysis is valid for a special simplified condition only. 
Penninckx [6] presented two (in fact equivalent) direct and relatively 
simple equations for A which are consistent with Cowan's individual 
expressions for 6t and 6o. 

In the recent years, a number of alternative possibilities were explored 
to determine thermal diffusivity, next to the "classical" flash and modula- 
tion methods. They have arisen from, among others, optoacoustic, 
photothermal, photodeflection, or thermoelastic disciplines. This certainly 
opened interesting horizons, especially since these methods are generally 
much more appropriate to measure fluids or (semi-)transparent samples. In 
this context one should mention a recent paper by Gendre et al. [-7]. The 
authors presented a method to measure and calculate thermal diffusivity by 
the modulation technique which originated from photothermal radiometry. 
Some mathematics exposed in their article and in the present article are 
partly comparable. Their paper can be considered to form a primary link 
between the "classical" and the "alternative" methods. 

The incentive for the present reanalysis of Cowan's theoretical treat- 
ment is to simplify further the mathematics for the general case. This may 
lead to a wider use of the method. Also, a discussion is given of possible 
inaccuracies and some suggestions for further improvements. 

The basic features exposed in this paper have been reported earlier in 
a conference, but only an abstract of the text was published [8]. 

2. REANALYSIS OF COWAN'S THEORETICAL TREATMENT 
USING COMPLEX NUMBERS MATHEMATICS 

It is assumed that one surface of a semiinfinite sample (see Fig. 1) is 
uniformly heated by a continuous energy beam with a small sinusoidal 
modulation superimposed on it. Also, it is assumed that energy conduction 
takes place through the sample perpendicular to the surface only and that 
loss of energy occurs only by radiation at both surfaces. Loss of energy by 
radiation only implicates vacuum conditions, e.g., in the case of electron 
beam heating, and thus no convection occurring. These assumptions 
include linearization of the energy transport and of the temperature 
distribution throughout the sample. 
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The total energy per unit surface reaching the surface at x = l at time 
t is 

Q ( t )  = Qc + Qm(t) (2) 

being the sum of a constant part Qc and of a sinusoidally modulated part 
Qm(t). 

The temperature distribution at any plane x throughout the sample at 
time t can thus be represented by 

r ( x ,  t) = T~(x) + Tm(x, t) (3) 

Linearization implies, among other things, that the temperature 
distribution throughout the sample is governed by the one-dimensional 
differential heat diffusion equation: 

a2r(x, t) aT(x, t) 
a 8 x  2 at  (4) 

where a is the thermal diffusivity, which is by definition equal to 

2 
a = - -  (5) 

pCp 

with 2 thermal conductivity, p density, and Cp specific heat. 
In order to solve Eq. (4) for this particular situation it is first split into 

two distinct parts in accordance with Eq. (3), the first part handling the 
constant (or equilibrium) terms 

a2Tc(x) 
a 8x-------T-- = 0 (6) 

and the second part the modulation term, which is of direct interest here: 

a2Tm(x, t) aTm(x , t) 
a 8 x  2 8t  (7) 

In this stage of the analysis all reasoning exposed is still essentially 
identical to that of Cowan. Yet when treating time-dependent phenomena 
and associated phase shifts, it is advantageous to make use of complex 
numbers mathematics. 

In the linearized problem the energy modulation and the temperature 
are sinusoidal functions of time. Thus 

Qm(/) ~ qe ' ~  (8) 
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(where ~o = 2~f is the angular frequency) and 

Tin(x, t) = O(x) e TM  (9) 

In Eqs. (8) and (9), q and O(x) are complex quantities. 
As a result, the heat diffusion equation (7), dealing with the modula- 

tion part, becomes 

F a 2 0 ( x ) ]  . . . .  
a j = (10) 

By introducing the parameter 

B= =(1 + i )  \~a  / (11) 

(which may be called the thermal diffusion length), Eq. (10) can be written 
as 

d20 (x ) -~20 (x )  (12) 
dx 2 

and the solution is of the form 

O(x)=A+e~X+A e -px (13) 

where the constants A+ and A are complex numbers. 
In order to determine these constants, appropriate boundary condi- 

tions have to be introduced. 
A first boundary condition can be established since the energy balance 

at the nonheated face, where x = 0, is the result of heating by conduction 
through the sample and of cooling by the radiative energy loss from that 
surface: 

aT(0, t) e(0, t) aT4(0, t) (14) 20 0x 

where e(0, t) is the total thermal emissivity at x = 0 and at time t, a is the 
Stefan-Boltzmann constant, and T(0, t) is the temperature at x = 0 and at 
time t. 

Developing Eq. (14), taking Eq. (3) into account, leads to 

/~o aZc(0)  -~- aTm(0  , t) 
ax 20 ax 8(0, t) a l T o ( 0  ) § Tin(0 , t ) ]  4 (15) 
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The right-hand term can be expanded following a Taylor series whereby 
the higher-order terms can be neglected since the modulation depth is 
assumed to be small. Consequently in the neighbourhood of Tr one can 
write 

2 o ~ + , ~ o  aTm(O't) e(O,t) aT~(O)+ Tm(O,t) a[~(O't) aT4(O)] (16) 
ax a T  

This equation can be split into two equations: 

20 arc(0) e(O, t) aT2(O) (17) 
ax 

aTm(0, t) 6[8(0, t) aT2(0)] 
-~o a- - - -x- -  Tm(0' t) a T  (18) 

By introducing the notation 

1 d[~(O, t) ~r4(o)] 
Co - 20 d T  

_ 1 dEe~T4(0)]  14eaT~ (19) 
)~ d T  = 2 

(Co may be called the inverse extrapolation length), Eq. (18) can be written 
as follows, also accepting e(0, t ) = e  and 2o =2,  which means that the 
emissivity and the conductivity remain constant with time and space, thus 
als0 within the small modulated temperature range: 

dTm(0, t) 
dx Tm(0, t) Co (20) 

Equation (20) can further be transformed, by taking Eq. (9) into 
account, to 

do(o) 
= 0(0) Co (21) 

dx 

Now the solution of Eq. (13) can be worked out. At x = 0  it may be 
concluded from Eq. (13) that 

0(0) = A + + A _ (22) 

and that 

do(o) 
= flA + -- flA _ (23) 

dx 
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Combining Eqs. (21), (22), and (23) leads to 

c o ( A + + A _ ) = f l ( A + - A  ) (24) 

This allows one to determine A+ and A up to a proportionality factor P, 
by transforming Eq. (24) to Eqs. (25) and (26), respectively: 

A+ = (fl + Co) P (25) 

A = (,B-co) P (26) 

As only differences of phases are of importance, a suitable reference 
phase may be imposed for which the phase angle of the complex number 
is zero (the phase angle of P may be put equal to zero), while the modulus 
is irrelevant. 

Equation (13), the complex function of O(x), may now be computed at 
x = 0 and at x = l, up to a real factor P, from which the phase angles q~0 
and ~1 can be calculated readily when taking into account Eqs. (11), (25), 
and (26): 

7E 
q~o=6O[0(0)]=60[A++A ] = q ~ [ 2 f l P ] = ~  (27) 

qs, = ~b[0(1)] = ~[(fl  + Co) e/~l+ (fi - c0) e -~'] (28) 

A second boundary condition is now introduced. At the heated face 
x=l ,  the energy flowing into the sample by conduction will be the 
difference between the energy deposited and the energy lost by radiation 
at that surface. Consequently, 

aT(l, t) 
2/ c ~  = Q(t) - ~(1, t) aT4(l, t) (29) 

At that face, a reasoning analogous to that used before (the boundary 
condition at x = 0) leads to the following two equations: 

2 OTc(1) Q~= ,--ff-~--x +e(l, t)aT4(l) (30) 

Qm(t)=)~OTm(l,Q__~___t) + Tm(/' t) r [g(/, t)~TaT4(l)] (31) 

Again, by introducing the notation 

C1--'~1 dT --2 dT ~ 2  4~~ (32) 
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Equation (31 can be written as follows, also again accepting ~(l, t) = e and 
2l = 2: 

Qm(t) = 2 dTm(l' t) + Tm(l, t) 2tct (33) 

and after having entered Eqs. (8) and (9), 

do(/) + q=2-~x o(I) 2cl (34) 

For the adopted conventions the phase angle (~bq) of the energy beam with 
respect to the reference is now computed from Eq. (34) taking into account 
x = l  and Eqs. (13), (25), and (26): 

( ~ q - ' ~ - ~  I ~ ]  = (J~l -(]~ "~ CO)(/~-~-el)e # ' -  ( f l--Co)(~--cl)e ~'] (35) 

At this stage, one can compute the phase shifts between q, 0(0), and 
O(l) in a straightforward manner by operations with complex numbers. 

The two phase shifts, with reference to the energy beam, will be 

7"C 
6 0 = (~q - -  I~ 0 = (Dq - -  ~ (36) 

6l  = l~q - -  ~ l  (37) 

and consequently, since A = 6 o -  61 [Eq. (1)], 

A = q~ , -~  (38) 

These equations do not need an explicit development. 

3. A L G O R I T H M  TO C O M P U T E  THE RESULTS 

Equation (38), expressing A as a function of a number of parameters, 
enables in principle the calculation of the thermal conductivity 2 or of the 
thermal diffusivity a. However, as the equations contain implicit functions 
of the conductivity (or of the diffusivity), the solution has to be derived by 
iteration. 

The two measured quantities are the temperature and A. Since the 
temperature is measured by pyrometry, corrections are necessary for the 
transmission of the measuring windows and for either the spectral 
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emissivity of the sample, when utilizing a brightness pyrometer, or the ratio 
of the spectral emissivities, when a two-color pyrometer is used. For these 
corrections see Ref. 9. First, the parameters thickness l, thermal expansion 
coefficient e, density p, specific heat Cp, and total emissivity e are intro- 
duced (either measured values or taken from literature) and their effective 
value is calculated for the temperature considered. Then, after selection of 
a starting value for 2 [or for a; see Eq. (5)], the corresponding value for 
A is calculated through Eq. (38), taking into account Eqs. (28), ( l l ) ,  and 
(19). This calculated A is compared with the measured A. Iteration goes on 
each time using a new adjusted value for 2 (or a), until the calculated and 
the measured values of A are in agreement. At that moment the final value 
for 2 (or a) has been obtained. During each iteration step, the temperature 
will be adjusted slightly and all the parameters involved have to be 
adjusted accordingly. 

4. DISCUSSION AND CONCLUSIONS 

It has been shown that the use of complex numbers notation leads to 
rather simple expressions for A. Indeed, the development exposed here 
contains nothing else but sums and ratios of the exponential functions of 
complex numbers. 

A direct advantage of the complex numbers method is that the present 
algorithm covers the range of phase lags from 0 to 360 ~ whereas in the 
Cowan or the Penninckx method a phase lag of 180 ~ cannot be exceeded 
since 6l, ~5o, and A are expressed by a tangent. This makes the method 
more universal, and moreover, the troubles possibly experienced with a 
tangent around 90 ~ are now avoided. 

A comparative computation has been carried out of the results 
obtained with the method proposed here and with the methods of respec- 
tively Cowan [1, 2], Wheeler [4], Penninckx [6], Schmidt [10], and 
Brandt and Neuer [11 ], each time using identical fictive test data. Exact 
agreement was found for all methods, although completely different 
algorithms were involved each time. 

Next to this comparative examination, also an estimate of the absolute 
accuracy should be considered. It has to be mentioned that the present 
evaluation is adapted to our method and equipment (see Ref. 12), although 
in principle it may apply equally well to other methods used for measuring 
thermal diffusivity. 

Apart from possible measurement errors (phase, temperature, etc.) and 
from errors arising from experimental conditions (e.g., nonisothermal 
heating, etc,), the final equations contain some theoretical simplifications, 
mainly as a result of the mathematical linearization. It is not obvious 

840/11/5-7 
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whether these simplifications always introduce negligible errors in practice. 
They may be reviewed as follows. 

1. Requirement for a semiinfinite sample, thermal conduction per- 
pendicular to the sample surface only and loss of energy by radiation 
only. These requirements can be met sufficiently well by choosing 
adequate dimensions for the sample ( ~  8 ram, -~ 1 mm thick) and 
for the sample holder with guard ring. Semiinfinity is, moreover, 
strongly enhanced when only the central part of the specimen is 
measured (e.g., 1/10 of the upper and lower surfaces) where per- 
pendicular conduction prevails. Loss by conduction through the 
sample holder suspending wires can be kept negligible. The surface 
in contact is only some 0.1% of the total surface or even less. Loss 
by convection is not occurring since heating by an electron beam 
requires an evacuated environment anyhow. 

2. Linearization of the energy transport through the sample. Even for 
very poor thermal conductors the difference between the mean 
temperatures of the bombarded and of the nonbombarded surface 
will normally be less than 1 to 2% of the mean temperature and 
the modulation depth can generally be kept below some 0.5%. 
Over such a small temperature range, linear transport can be 
assumed. 

3. Substitution of e(l, t )=e(0,  t) by e and 2t=2o by 2 in Eqs. (19) and 
(32). This means that the total emissivity as well as the thermal 
conductivity is supposed to be constant within the temperature 
interval over the sample. This condition is almost always fulfilled, 
in view again of the very small temperature differences, except 
possibly in close proximity of a concurrent phase transition. 

4. Boundary conditions. The two boundary conditions, dealing with 
the energy balance between conduction and radiative heat loss 
[Eqs. (14) and (29)] are valid for radiation loss into an infinite 
space at 0 K. Yet since radiation will occur toward the measuring 
chamber walls, which are usually almost at room temperature, an 
error of a few percent is possible when the specimen temperature 
is, e.g., 500~ or less. Reduction of this error is easily achieved by 
taking into account the actual wall temperature through the 
( T 2 -  4 Twall ) radiative heat loss relation. At higher temperatures 
the error will always be negligible. 

An inherent weakness of all thermal diffusivity methods is the fact that 
the various interfering parameters are not always known with a sufficiently 
high accuracy. The influence of these parameters on the final results for the 
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Table I. Average Deviation of the Final Calculated Results (T, a, and 2) as Caused 
by an Error Value of 10% for the Various Interfering Parameters 

Interfering Deviation of final 
parameter, calculated results 

differing (%) 
from real 

value by 10% T a 2 Final significance 

T 11 0.4 6 ) left out of consi- 
A 0.05 13 13 J deration a 
f 0.005 1 1 Can be neglected 
l 0.03 19 19 Important for a and 2 
c~ 0.005 0.3 0.2 Negligible 
e 0.03 0.2 0.2 Negligible 
e~ 3 0.1 2 Low to negligible 

p 0.03 0.2 10 ~ Important for 2 
Cp 0.03 0.2 10 ) 

a Mentioned only for completeness since T and A do not directly interfere in this study. 

diffusivity a, the conduct iv i ty  2, and  the t empera tu re  T has been examined  
numerical ly .  Table  I gives the average devia t ions  of the finally ca lcula ted  
results as caused by a devia t ion  of 10% for each interfering parameter .  

T and  A are measured  data.  Their  accuracy  depends  p r imar i ly  on the 
ins t ruments  used. The value of f is no rma l ly  k n o w n  very accurately.  An 
er ror  on the p a r a m e t e r  l has a large influence bo th  on the diffusivity and  
on the conduct iv i ty ,  whereas  the values of  Cp and of p influence only the 
conduct ivi ty .  An  e r ror  in the pa rame te r s  c~, e and  es leads only to a negli- 
gible or  small  devia t ion  of the ca lcula ted  results (a l though  it should  be 
emphas ized  tha t  e and  es are very often ha rd ly  known) .  

The  inherent  weakness  in connec t ion  with the var ious  imperfect ly 
k n o w n  interfering pa rame te r s  can poss ibly  be obv ia ted  by de te rmin ing  one 
of these parameters ,  s imul taneous ly  with T, a, and  2. Therefore,  a second 

measu remen t  is necessary,  e.g., c~ t or  ~o, next  to A. In a fo r thcoming  pape r  
this poss ib i l i ty  will be t rea ted  more  extensively. I t  should  be men t ioned  
tha t  Schmidt  [10] ,  Brand t  and  Neue r  [-11], and  Z h o u  Ben-Lian  [13 ]  
have made  progress  in this direct ion.  

N O M E N C L A T U R E  

a The rma l  diffusivity, m 2. s -  1 

c Index deno t ing  a cons tan t  par t ,  d imensionless  
ct, Co Inverse  ex t r apo l a t i on  length, m -  1 
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Cp 

f 
l 

Oo 

Qm(t) 

Q(t)  
q 
T, 
To 
T(x,  t) 
~m(x, t) 
t 

60 

6t 

gs 
0 
2 

P 
(7 

co 

Specific heat, J �9 kg i .  K 1 
Modula t ion  frequency, Hz 
Thickness of disk-shaped sample, m 
Equilibrium energy per unit surface deposited on surface x = l, 
W .m -2 

Energy of modula t ion  per unit surface deposited on surface x = l, 
W . m - 2  

Total  energy per unit surface deposited on surface x = l, W .  m 2 
Complex energy modula t ion  amplitude, W .  m -2 
Equilibrium temperature of heated surface, K 
Equilibrium temperature of nonheated surface, K 
Total  temperature of any plane at distance x and at time t, K 
Modula t ion  temperature at any distance x and at time t, K 
Time, s 
Distance perpendicular to the specimen's surface and with the 
nonheated surface as the reference, m 
Thermal  linear expansion coefficient, dimensionless 
Intermediary parameter,  m - 2  
Phase difference between heated and nonheated specimen face, 
radian 
Phase difference between energy modula t ion  and nonheated face, 
radian 
Phase difference between energy modula t ion  and heated face, 
radian 
Total  emissivity, dimensionless 
Spectral emissivity, dimensionless 
Temperature,  amplitude of modula ted  part  argument,  K 
Thermal  conductivity, W -  m 1. K -  1 
Density, kg-  m -3 
Stefan-Bol tzmann constant,  5.66961 x 10-SW �9 m 2. K - 4  
Angular  frequency = 27rf, s 

Indices used, (x), (x, t), c, m, l, O, t, or the like, or  combinat ions  of them, 
denote a situation at x, or x and t, etc. 
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